Allied Telesis

SwitchBlade[®] ×8100 Series

Next generation intelligent Layer 3+ chassis switches

The Allied Telesis SwitchBlade x8100 Series of advanced Layer 3+ chassis switches are available in 6 and 12 slot models. The CFC400 based system delivers high availability, wirespeed performance, and a high port count. Advanced features provide the ideal solution for the modern enterprise network, where resiliency, reliability and high performance are the key requirements.

SwitchBlade x8100 Series switches provide a high performing scalable solution, with an extensive range of connectivity options. Dual CFC400 control cards provide resiliency. Gigabit and 10 Gigabit line card options ensure a system capable of meeting the requirements of today's networks, and the flexibility to expand when required.

High performing

Dual CFC400 control cards provide 80Gbps non-blocking throughput to each line card slot, providing maximum performance and wirespeed delivery of critical IPv4 and IPv6 traffic.

Enjoy effortless maximum availability of premium services and applications, with industry-leading Quality of Service (QoS) features managing network responsiveness.

Powerful network management

The Allied Telesis Management Framework (AMF) meets the increased management requirements of modern converged networks, automating many everyday tasks including configuration management. AMF has powerful centralized management features that manage a complete network as a single virtual device. The network can be expanded with plug-and-play simplicity, and network node recovery is fully zerotouch.

Resilient

SwitchBlade x8100 Series switches operate with one AC or DC system PSU. Installing a second load-sharing PSU provides ultimate redundancy. Installing two Power over Ethernet (PoE) PSUs maximizes power available to connected devices.

The active/active control cards interconnect through redundant paths to the line cards over a passive backplane. Control cards, line cards, power supplies and fan tray are all hot-swappable, to minimize downtime when performing maintenance or upgrading the system.

To provide a high-speed solution where recovery occurs within as little as 50ms, SwitchBlade x8100 Series switches can be deployed in a ring-based topology, with the protected ring running at up to 10Gbps. This high performing resilient design for distributed networks is made possible with Allied Telesis EPSRing™ (Ethernet Protection Switched Ring) technology.

Scalable

The choice of 6 and 12-slot chassis versions provides a powerful solution for networks of all sizes, and both versions share the same fully featured AlliedWare Plus™ Operating System.

To expand the SwitchBlade x8100 system to encompass large networks, including stacking two chassis with VCStack Plus™, the CFC400 control cards can be replaced with CFC960 control cards.

There are currently three 24-port Gigabit line cards available: copper, PoE+ and fiber (SFP).

The 40-port Gigabit copper line card maximizes port density, providing up to 400 Gigabit copper ports in a single 7RU SwitchBlade x8112 chassis, or 200 Gigabit copper ports in a single 4RU SwitchBlade x8106 chassis.

The 6-port 10 Gigabit (SFP+) line card provides the SwitchBlade x8100 Series with high-speed backbone connectivity.

Power over Ethernet Plus (PoE+)

SwitchBlade x8100 Series switches support IEEE 802.3at PoE+ (30W) allowing you

network. The greater power supplied by PoE+ supports applications such as pan, tilt and zoom IP surveillance cameras, IP video phones, and wireless access points.

Environmentally friendly

SwitchBlade x8100 Series switches are designed to reduce power consumption and minimize hazardous waste. Features

include high efficiency power supplies and low power chip sets. An ECO-

to future-proof your

Switch button on the front panel allows additional power conservation, by turning off all diagnostic LED indicators when they are not required.

New features

- » Allied Telesis Management Framework (AMF) enhancements for networks up to 80 nodes
 » BGP4+ for IPv6
- » BGP4+10f IP

Key Features

Allied Telesis Management Framework (AMF)

- » Allied Telesis Management Framework (AMF) is a sophisticated suite of management tools that provide a simplified approach to network management. Common tasks are automated, or made so simple that you can achieve the everyday running of a network without the need for highly trained network engineers. Powerful features like centralized management, auto-backup, auto-upgrade, auto-provisioning and auto-recovery enable plug-andplay networking and zero-touch management.
- » Any SwitchBlade x8100 Series switch can operate as the AMF network master, storing firmware and configuration backups for all other network nodes. The AMF master enables auto-provisioning and auto-upgrade by providing appropriate files to new network members.
- » The CFC400 can manage AMF networks of up to 80 nodes, which can be located locally or across WAN links.

EPSRing™ (Ethernet Protection Switched Ring)

- » EPSRing and 10 Gigabit Ethernet allow several switches to form a high-speed protected ring capable of recovery within as little as 50ms. This feature is perfect for high performance and high availability at the core of enterprise or provider access networks.
- » Superloop Protection enables a link between two EPSR nodes to be in separate EPSR domains, improving redundancy and network fault resiliency.

Access Control Lists (ACLs)

» AlliedWare Plus™ delivers industry-standard access control functionality with ACLs. ACLs filter network traffic to control whether routed packets are forwarded or blocked at the port interface. This provides a powerful network security mechanism to select the types of traffic to be analyzed, forwarded, or otherwise influenced.

Industry-leading Quality of Service (QoS)

» Comprehensive low-latency wirespeed QoS provides flow-based traffic management with full classification, prioritization, traffic shaping and min/max bandwidth profiles. Enjoy boosted network performance and guaranteed delivery of business-critical Ethernet services and applications. Time-critical services such as voice and video take precedence over nonessential services such as file downloads, maintaining responsiveness of enterprise applications.

Power over Ethernet Plus (PoE+)

» With PoE, a separate power connection to media end points such as IP phones and wireless access points is not necessary. PoE+ provides even greater flexibility, providing the capability to connect devices requiring more power (up to 30 Watts)—for example, tilt and zoom security cameras.

Ease of management

- » The AlliedWare Plus operating system incorporates an industry standard CLI, facilitating intuitive manageability.
- » You can automate configuration tasks since commands may be used in scripts. Triggers can also be utilized. These provide a powerful mechanism for automatic and timed management, by automating command execution in response to specific events.
- » With three distinct user modes, the CLI is very secure, and the use of encrypted remote login sessions ensures CLI access is not compromised.

AlliedWare Plus licensing unlocks new features

» With AlliedWare Plus, a single license password is all that is necessary to unlock additional feature bundles that ship with the switch. The feature bundles provide a very simple upgrade path.

Dynamic Host Configuration Protocol (DHCPv6)

» DHCPv6 is used to dynamically assign IPv6 addresses to hosts from a central location. Acting as DHCPv6 client enables the switch to receive an IPv6 address, and acting as server enables the switch to dynamically allocate IPv6 addresses to hosts. The DHCPv6 server and client both support the Prefix Delegation feature which allocates a whole IPv6 subnet to a DHCP client. The client, in turn, can allocate addresses from this subnet to the hosts that are connected to it.

Virtual Router Redundancy Protocol (VRRPv3)

» VRRPv3 is a protocol for providing device redundancy, by connecting redundant WAN gateway routers or server access switches in an IPv6 network. It allows a backup router or switch to automatically take over if the primary (master) router or switch fails.

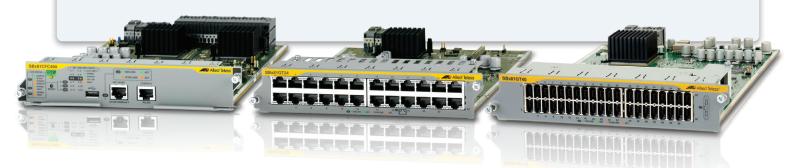
sFlow

» sFlow is an industry standard technology for monitoring high-speed switched networks. It gives complete visibility into network use, enabling performance optimization, usage accounting/billing, and defence against security threats. Sampled packets sent to a collector ensure it always has a real-time view of network traffic.

Network Access Control (NAC)

- » NAC allows for unprecedented control over user access to the network in order to mitigate threats to network infrastructure. Allied Telesis SwitchBlade x8100 Series switches use IEEE 802.1x port-based authentication in partnership with standardscompliant dynamic VLAN assignment, to assess a user's adherence to network security policies and either grant access or offer remediation.
- » If multiple users share a port, multi-authentication can be used. Different users on the same port can be assigned into different VLANs, and so given different levels of network access. Additionally, a Guest VLAN can be configured to provide a catch-all for users who aren't authenticated.

Tri-authentication


» Authentication options on SwitchBlade x8100 switches also include alternatives to IEEE 802.1x port-based authentication, such as Web authentication to enable guest access, and MAC authentication for end points that do not have an IEEE 802.1x supplicant. All three authentication methods—IEEE 802.1x, MAC-based and Web-based—can be enabled simultaneously on the same port. This is called tri-authentication.

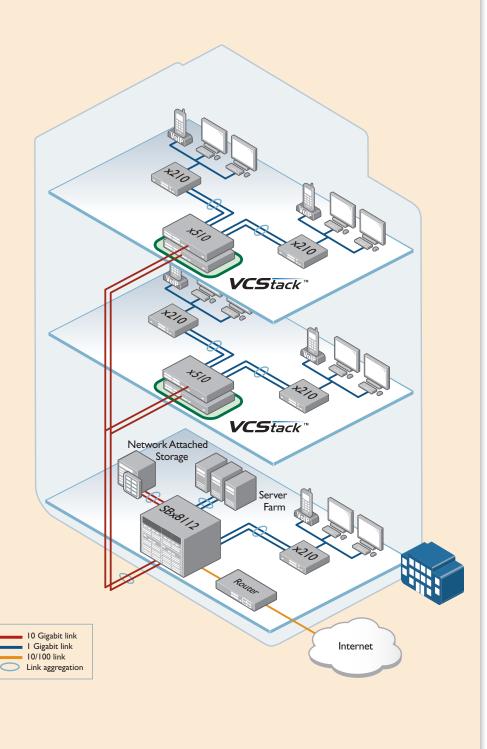
Link aggregation

» Link aggregation allows a number of individual switch ports to be combined, forming a single logical connection of higher bandwidth. This provides a higher performance link, and redundancy for a reliable and robust network. The SwitchBlade x8100 Series allow link aggregation groups to be created across line cards to maximize link resiliency.

Hardware performance

» Layer-3 switching and routing is performed in specialized ASIC hardware for wirespeed packet forwarding and maximum throughput.

eco friendly

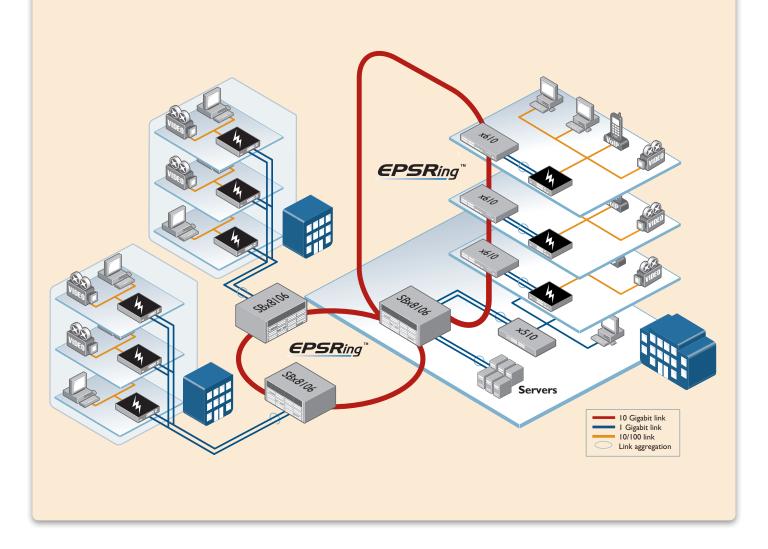

Key Solutions

Network core resiliency

The convergence of network services in the enterprise has led to increasing demand for high performing networks with minimal downtime. In this solution, a SwitchBlade x8112 with dual CFC400 control cards provides a powerful network core with extremely high reliability. PSU redundancy ensures maximum uptime, while hot-swappable PSUs, fan tray, control and line cards allow for system maintenance or reconfiguration with no network interruption.

Real-time applications like VoIP and streaming video are assured premium service on the network, as near hitless failover between the dual control cards on the SwitchBlade x8112 means there is no perceptible disruption in the case of a problem.

Link aggregation across line cards to servers, network storage, and distribution switches leaves no single point of failure in this high performing network core.



Key Solutions

Distributed network with EPSRing

Wherever a distributed network design is required, Allied Telesis Ethernet Protection Switched Ring (EPSRing) with the SwitchBlade x8106 is ideal, providing high-speed 10GbE connectivity. Failover in a little as 50ms prevents a node or link failure from affecting customer experience, even when using demanding applications such as IP telephony and video monitoring. This is the ideal solution for ensuring continual access to online resources and applications in a multi-building business. Now that technology has made high-availability and high-bandwidth so accessible, corporate business, education providers and other enterprise network users can enjoy the many benefits that EPSRing provides. This advanced self-healing network technology meets today's constant demand for information.

SwitchBlade x8100 Series (SBx81CFC400) | Intelligent Layer 3+ Chassis Switches

Product Specifications

AT-SBx81CFC400 (Controller Fabric Card)

- » 512MB SDRAM
- » 512KB NVRAM
- » 128MB flash memory
- » Up to 32K MAC addresses*
- » Up to 16K IP routes maximum*
- » 24Mbit packet buffer memory
- » Supports 10KB jumbo packets
- »4K VLANs

AT-SBx81GP24 (24 x 10/100/1000T PoE+ line card)

» 12Mbit packet buffer memory

AT-SBx81GT24 (24 x 10/100/1000T line card)

» 12Mbit packet buffer memory

AT-SBx81GT40 (40 x 10/100/1000T RJ.5 line card) » 32Mbit packet buffer memory

AT-SBx81GS24a (24 x 100/1000 SFP line card) » 24Mbit packet buffer memory

AT-SBx81XS6 (6 x 10Gbps SFP+ line card)

» 24Mbit packet buffer memory

Reliability

- » Modular AlliedWare Plus operating system
- » Redundant controller fabric cards
- » Redundant 1200W AC or DC system power supplies
- » Load-sharing 1200W PoE+ power supplies
- » Full environmental monitoring of PSUs, fans, temperature and internal voltages. SNMP traps alert network managers in case of failure

Expandability

- » High-speed line slots support any mix of hotswappable cards for port flexibility and application versatility
- » Premium license option for additional features
- » AMF Master license option

Flexibility and compatibility

- » Gigabit SFP ports will support any combination of 1000T, 100FX, 100BX, 1000SX, 1000LX, 1000ZX or 1000ZX CWDM SFPs
- » 10G SFP+ ports will support any combination of 10GSR, 10GLR or 10GER SFP+ modules and SFP+ direct attach cables

Diagnostic tools

- » Hardware health monitoring
- » Automatic link flap detection and port shutdown
- » Optical Digital Diagnostic Monitoring (DDM)
- » Port mirroring

IPv4 features

- » Black hole routing
- » Directed broadcast forwarding
- » DNS relay
- » Equal Cost Multi Path (ECMP) routing

* Depending on selected configuration

the solution : the network

- » Route maps and route redistribution (OSPF, BGP, RIP)
- » Static unicast and multicast routes for IPv4
- » UDP broadcast helper (IP helper)

IPv6 features

- » DHCPv6 relay, DHCPv6 client
- » DNSv6 relay, DNSv6 client
- » IPv4 and IPv6 dual stack
- » IPv6 QoS and hardware ACLs
- » Device management over IPv6 networks with SNMPv6, Telnetv6, SSHv6 and Syslogv6
- » NTPv6 client and server
- » Static unicast and multicast routes for IPv6

Management

- » Allied Telesis Management Framework (AMF) enables powerful centralized management and zero-touch device installation and recovery
- » Eco-friendly mode allows ports and LEDs to be disabled to save power
- » Web-based Graphical User Interface (GUI)
- » Industry-standard CLI with context-sensitive help
- » Out-of-band 10/100/1000T Ethernet management port on the CFC front panel for ease of access
- » Powerful CLI scripting engine and built-in text editor
- » Comprehensive SNMP MIB support for standardsbased device management
- » Management via Telnet or SSH to CLI, or HTTP to web interface (GUI)
- » Event-based triggers allow user-defined scripts to be executed upon selected system events
- » USB interface allows software release files, configurations and other files to be stored for backup and distribution to other devices

Quality of Service (QoS)

- » 8 priority queues with a hierarchy of high priority queues for real time traffic, and mixed scheduling, for each switch port
- » Limit bandwidth per port or per traffic class down to 64kbps
- » Wirespeed traffic classification with low latency essential for VoIP and real-time streaming media applications
- » Policy-based QoS based on VLAN, port, MAC and general packet classifiers
- » Policy-based storm protection
- » Taildrop for queue congestion control
- » Strict priority, weighted round robin or mixed scheduling
- » IP precedence and DiffServ marking based on layer 2, 3 and 4 headers
- » DSCP remarking based on TCP/UDP port number

Resiliency features

- » Control Plane Prioritization (CPP) ensures the CPU always has sufficient bandwidth to process network control traffic
- » Dynamic link failover (host attach)
- » EPSRing (Ethernet Protection Switched Rings) with SuperLoop Protection (SLP)

CFC400

» EPSR enhanced recovery for extra resiliency

- » Loop protection: loop detection and thrash limiting » PVST+ compatibility mode
- » STP root guard

Security features

- » Access Control Lists (ACLs) based on layer 3 and 4 headers
- » Configurable auth-fail and guest VLANs
- » Authentication, Authorisation and Accounting (AAA)
- » Bootloader can be password protected for device security
- » BPDU protection
- » DHCP snooping, IP source guard and Dynamic ARP Inspection (DAI)
- » Dynamic VLAN assignment
- » MAC address filtering and MAC address lock-down
- » Network Access and Control (NAC) features manage endpoint security
- » Port-based learn limits (intrusion detection)
- » Private VLANs provide security and port isolation for multiple customers using the same VLAN
- » Secure Copy (SCP)
- » Strong password security and encryption
- » Tri-authentication: MAC-based, web-based and IEEE 802.1x

Environmental specifications

- » Operating temperature range:
 0°C to 40°C (32°F to 104°F).
 Derated by 1°C per 305 meters (1,000 ft)
- » Storage temperature range:
 -25°C to 70°C (-13°F to 158°F)
 » Operating relative humidity range:

5% to 90% non-condensing

» Storage relative humidity range:

5% to 95% non-condensing

3,048 meters maximum (10,000 ft)

Electrical approvals and compliances

» Immunity: EN55024, EN61000-3-levels 2

» Standards: UL60950-1, CAN/CSA-C22.2

No. 60950-1-03, EN60950-1, EN60825-1,

Restrictions on Hazardous Substances (RoHS)

SwitchBlade x8100 Series with CFC400 | 5

(Harmonics), and 3 (Flicker) - AC models only

» EMC: EN55022 class A, FCC class A, VCCI class A

» Operating altitude:

AS/NZS 60950.1

» EU RoHS compliant

Country of origin

» China RoHS compilant

compliance

» Singapore

» Certification: UL, cUL, TUV

Safetv

Standards and Protocols

AlliedWare Plus Operating System Version 5.4.4			
Authentic	cation		
RFC 1321	MD5 Message-Digest algorithm		
RFC 1828	IP authentication using keyed MD5		
	ateway Protocol (BGP)		
BGP dynami	ic capability		
BGP outbou	nd route filtering		
RFC 1772	Application of the Border Gateway Protocol (BGP) in the Internet		
RFC 1997	BGP communities attribute		
RFC 1997 RFC 2385			
REC 2300	signature option		
RFC 2439	BGP route flap damping		
RFC 2439	Use of BGP-4 multiprotocol extensions for IPv6		
RFC 2040	inter-domain routing		
RFC 2858	Multiprotocol extensions for BGP-4		
RFC 2918	Route refresh capability for BGP-4		
RFC 2918 RFC 3392	Capabilities advertisement with BGP-4		
RFC 3882	•		
RFC 3882	Configuring BGP to block Denial-of-Service (DoS) attacks		
RFC 4271	Border Gateway Protocol 4 (BGP-4)		
RFC 4360	BGP extended communities		
RFC 4456	BGP route reflection - an alternative to full mesh		
	iBGP		
RFC 4724	BGP graceful restart		
RFC 4893	BGP support for four-octet AS number space		
RFC 5065	Autonomous system confederations for BGP		
Encryptic	Encryption		
FIPS 180-1	Secure Hash standard (SHA-1)		
FIPS 186	Digital signature standard (RSA)		
	Data Francistica Oteradard (DEC and ODEC)		

Ethernet IEEE 802.1AXLink aggregation (static and LACP)	FIPS 46-3	Data Encryption Standard (DES and 3DES)
ILLE 002.2 EUgical LITIK CUTILIUI (LLC)	IEEE 802.1A	KLink aggregation (static and LACP) Logical Link Control (LLC)

ILLE OULIE	Logical Linit Control (LLC)
IEEE 802.3	Ethernet
IEEE 802.3ab	1000BASE-T
IEEE 802.3ad	Static and dynamic link aggregation
IEEE 802.3ae	10 Gigabit Ethernet
IEEE 802.3af	Power over Ethernet (PoE)
IEEE 802.3at	Power over Ethernet plus (PoE+)
IEEE 802.3az	Energy Efficient Ethernet (EEE)
IEEE 802.3u	100BASE-X
IEEE 802.3x	Flow control - full-duplex operation
IEEE 802.3z	1000BASE-X

IPv4 features

II V4 ICutu	103
RFC 768	User Datagram Protocol (UDP)
RFC 791	Internet Protocol (IP)
RFC 792	Internet Control Message Protocol (ICMP)
RFC 793	Transmission Control Protocol (TCP)
RFC 826	Address Resolution Protocol (ARP)
RFC 894	Standard for the transmission of IP datagrams
	over Ethernet networks
RFC 919	Broadcasting Internet datagrams
RFC 922	Broadcasting Internet datagrams in the
	presence of subnets
RFC 932	Subnetwork addressing scheme
RFC 950	Internet standard subnetting procedure
RFC 951	Bootstrap Protocol (BootP)
RFC 1027	Proxy ARP
RFC 1035	DNS client
RFC 1042	Standard for the transmission of IP datagrams
	over IEEE 802 networks
RFC 1071	Computing the Internet checksum
RFC 1122	Internet host requirements
RFC 1191	Path MTU discovery
RFC 1256	ICMP router discovery messages
RFC 1518	An architecture for IP address allocation with CIDR
RFC 1519	Classless Inter-Domain Routing (CIDR)
RFC 1542	Clarifications and extensions for BootP

RFC 1591 RFC 1812 RFC 1918 RFC 2581	Domain Name System (DNS) Requirements for IPv4 routers IP addressing TCP congestion control
IPv6 feat	ures
RFC 1981	Path MTU discovery for IPv6
RFC 2460	IPv6 specification
RFC 2464	Transmission of IPv6 packets over Ethernet networks
RFC 3056	Connection of IPv6 domains via IPv4 clouds
RFC 3484	Default address selection for IPv6
RFC 3596	DNS extensions to support IPv6
RFC 4007	IPv6 scoped address architecture
RFC 4193	Unique local IPv6 unicast addresses
RFC 4291	IPv6 addressing architecture
RFC 4443	Internet Control Message Protocol (ICMPv6)
RFC 4861	Neighbor discovery for IPv6
RFC 4862	IPv6 Stateless Address Auto-Configuration (SLAAC)
RFC 5014	IPv6 socket API for source address selection
RFC 5095	Deprecation of type 0 routing headers in IPv6
RFC 5175	IPv6 Router Advertisement (RA) flags option
RFC 6105	IPv6 Router Advertisement (RA) guard
Managen	nent

Managam	ont
Managem AMF MIB and	
AT Enterprise	
SNMPv1, v2c	
,	Link Layer Discovery Protocol (LLDP)
RFC 1155	Structure and identification of management
11 0 1100	information for TCP/IP-based Internets
RFC 1157	Simple Network Management Protocol (SNMP)
RFC 1212	Concise MIB definitions
RFC 1213	MIB for network management of TCP/IP-based
	Internets: MIB-II
RFC 1215	Convention for defining traps for use with the
	SNMP
RFC 1227	SNMP MUX protocol and MIB
RFC 1239	Standard MIB
RFC 1724	RIPv2 MIB extension
RFC 2011	SNMPv2 MIB for IP using SMIv2
RFC 2012	SNMPv2 MIB for TCP using SMIv2
RFC 2013	SNMPv2 MIB for UDP using SMIv2
RFC 2096	IP forwarding table MIB
RFC 2578	Structure of Management Information v2 (SMIv2)
RFC 2579	Textual conventions for SMIv2
RFC 2580	Conformance statements for SMIv2
RFC 2674	Definitions of managed objects for bridges with
	traffic classes, multicast filtering and VLAN extensions
RFC 2741	Agent extensibility (AgentX) protocol
RFC 2787	Definitions of managed objects for VRRP
RFC 2819	RMON MIB (groups 1,2,3 and 9)
RFC 2863	Interfaces group MIB
RFC 3164	Syslog protocol
RFC 3176	sFlow: a method for monitoring traffic in
	switched and routed networks
RFC 3411	An architecture for describing SNMP
	management frameworks
RFC 3412	Message processing and dispatching for the
	SNMP
RFC 3413	SNMP applications
RFC 3414	User-based Security Model (USM) for SNMPv3
RFC 3415	View-based Access Control Model (VACM) for SNMP
RFC 3416	Version 2 of the protocol operations for the SNMP
RFC 3417	Transport mappings for the SNMP
RFC 3418	MIB for SNMP
RFC 3621	Power over Ethernet (PoE) MIB
RFC 3635	Definitions of managed objects for the Ethernet-
	like interface types
RFC 3636	IEEE 802.3 MAU MIB

RFC 4188	Definitions of managed objects for bridges
RFC 4318	Definitions of managed objects for bridges with
	RSTP Definitions of managed chicate for remote ping
RFC 4560	Definitions of managed objects for remote ping, traceroute and lookup operations
RFC 6527	Definitions of managed objects for VRRPv3
Multicast	support
	uter (BSR) mechanism for PIM-SM
IGMP query s	olicitation
	ng (v1, v2 and v3)
IGMP snoopin	ng fast-leave nulticast forwarding (IGMP/MLD proxy)
MLD snoopin	
PIM for IPv6	
RFC 1112	Host extensions for IP multicasting (IGMPv1)
RFC 2236	Internet Group Management Protocol v2
RFC 2710	(IGMPv2) Multicast Listener Discovery (MLD) for IPv6
RFC 2715	Interoperability rules for multicast routing
	protocols
RFC 3376	IGMPv3
RFC 3810	Multicast Listener Discovery v2 (MLDv2) for IPv6
RFC 3973	PIM Dense Mode (DM)
RFC 4541	IGMP and MLD snooping switches
RFC 4601	Protocol Independent Multicast - Sparse Mode
RFC 4604	(PIM-SM): protocol specification (revised) Using IGMPv3 and MLDv2 for source-specific
NFC 4004	multicast
RFC 4607	Source-specific multicast for IP
Open Sho	rtest Path First (OSPF)
OSPF link-loc	. ,
OSPF MD5 at	
OSPF restart	
Out-of-band l RFC 1245	SDB resync OSPF protocol analysis
RFC 1245	Experience with the OSPF protocol
RFC 1370	Applicability statement for OSPF
RFC 1765	OSPF database overflow
RFC 2328	OSPFv2
RFC 2370	OSPF opaque LSA option
RFC 2740 RFC 3101	OSPFv3 for IPv6 OSPF Not-So-Stubby Area (NSSA) option
RFC 3509	Alternative implementations of OSPF area
	border routers
RFC 3623	Graceful OSPF restart
RFC 3630	Traffic engineering extensions to OSPF
RFC 4552 RFC 5329	Authentication/confidentiality for OSPFv3 Traffic engineering extensions to OSPFv3
Quality of IEEE 802.1p	Service (QoS) Priority tagging
RFC 2211	Specification of the controlled-load network
	element service
RFC 2474	DiffServ precedence for eight queues/port
RFC 2475	DiffServ architecture
BEC 2597	DiffServ Assured Forwarding (AF)

- RFC 2597 DiffServ Assured Forwarding (AF)
- RFC 3246 DiffServ Expedited Forwarding (EF)

Resiliency features

- IEEE 802.1D MAC bridges
- IEEE 802.1s Multiple Spanning Tree Protocol (MSTP)
- IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) RFC 5798 Virtual Router Redundancy Protocol version 3
- (VRRPv3) for IPv4 and IPv6

Routing Information Protocol (RIP)

RFC 1058	Routing Information Protocol (RIP)
RFC 2080	RIPng for IPv6
RFC 2081	RIPng protocol applicability statement
RFC 2082	RIP-2 MD5 authentication
RFC 2453	RIPv2

ocounty it	Jataros
SSH remote I	ogin
SSLv2 and SS	SLv3
TACACS+ ac	counting and authentication
IEEE 802.1X	authentication protocols (TLS, TTLS, PEAP and
	MD5)
IEEE 802.1X	multi-supplicant authentication
IEEE 802.1X	port-based network access control
RFC 2246	TLS protocol v1.0
RFC 2865	RADIUS
RFC 2866	RADIUS accounting
RFC 2868	RADIUS attributes for tunnel protocol support
RFC 3546	Transport Layer Security (TLS) extensions
RFC 3579	RADIUS support for Extensible Authentication
	Protocol (EAP)
RFC 3580	IEEE 802.1x RADIUS usage guidelines
RFC 3748	PPP Extensible Authentication Protocol (EAP)
RFC 4251	Secure Shell (SSHv2) protocol architecture
RFC 4252	Secure Shell (SSHv2) authentication protocol

RFC 4253	Secure Shell (SSHv2) transport layer protocol
RFC 4254	Secure Shell (SSHv2) connection protocol

Services

001110000	
RFC 854	Telnet protocol specification
RFC 855	Telnet option specifications
RFC 857	Telnet echo option
RFC 858	Telnet suppress go ahead option
RFC 1091	Telnet terminal-type option
RFC 1350	Trivial File Transfer Protocol (TFTP)
RFC 1985	SMTP service extension
RFC 2049	MIME
RFC 2131	DHCPv4 (server, relay and client)
RFC 2132	DHCP options and BootP vendor extensions
RFC 2554	SMTP service extension for authentication
RFC 2616	Hypertext Transfer Protocol - HTTP/1.1
RFC 2821	Simple Mail Transfer Protocol (SMTP)
RFC 2822	Internet message format
RFC 3046	DHCP relay agent information option (DHCP
	option 82)

Physical specifications

Product	Dimensions (WxDxH)	Weight (kg/lbs)
AT-SBx8112 chassis	48.0 x 38.8 x 31.0 cm	17.8 kg (39.1 lb)
AT-SBx8106 chassis	48.0 x 38.8 x 17.6 cm	14.4 kg (31.8 lb)
AT-SBx81CFC400 controller fabric card	20.7 x 31.3 x 4.1 cm	1.1 kg (2.4 lb)
AT-SBx81GP24 PoE+ line card	20.7 x 31.3 x 4.1 cm	1.1 kg (2.3 lb)
AT-SBx81GT24 line card	20.7 x 31.3 x 4.1 cm	1.1 kg (2.3 lb)
AT-SBx81GT40 RJ point five line card	20.7 x 31.3 x 4.1 cm	1.1 kg (2.3 lb)
AT-SBx81GS24a SFP line card	20.7 x 31.3 x 4.1 cm	1.1 kg (2.3 lb)
AT-SBx81XS6 SFP+ line card	20.7 x 31.3 x 4.1 cm	0.8 kg (1.8 lb)
AT-SBxPWRSYS1 AC sys power supply	10.2 x 32.2 x 4.3 cm	2.8 kg (6.1 lb)
AT-SBxPWRSYS1-80 DC sys power supply	10.2 x 32.2 x 4.3 cm	2.8 kg (6.1 lb)
AT-SBxPWRPOE1 PoE power supply	10.2 x 32.2 x 4.3 cm	2.7 kg (6.0 lb)
AT-SBxFAN12 fan tray	2.7 x 33.4 x 26.0 cm	1.8 kg (4.0 lb)
AT-SBxFAN06 fan tray	2.6 x 29.8 x 10.3 cm	0.86 kg (1.9 lb)

PoE power provisioning

Maximum number of ports that can be powered (with 2 x AT-SBxPWRPOE1 installed)

	PoE Power	Class 3 (15.4W)	Class 4 (30W)
PSUs in redundant mode	1200W	77	40
PSUs in boost mode	2400W	155	80

Power consumption

	Maximum	Heat dissipation
AT-SBx81CFC400	48.3W	164.8 BTU/hr
AT-SBx81GP24	34.4W	117.4 BTU/hr
AT-SBx81GT24	34.4W	117.4 BTU/hr
AT-SBx81GT40	53.9W	183.7 BTU/hr
AT-SBx81GS24a	56.3W	192.1 BTU/hr
AT-SBx81XS6	48.3W	164.8 BTU/hr

Power efficiency

Maximum power supply efficiency (based on 100V input voltage)	m power supply efficiency (based on 100V input voltage)
---	---

AT-SBxPWRSYS1	78.4% (100% load) 81.8% (50% load)
AT-SBxPWRPOE1	81.3% (100% load) 83.6% (50% load)

Power characteristics

Voltage: 100-240V AC (10% auto-ranging) Frequency: 50/60 Hz Maximum current: 16A @ 100V

RFC 3315	DHCPv6 (server, relay and client)
RFC 3633	IPv6 prefix options for DHCPv6
RFC 3646	DNS configuration options for DHCPv6
RFC 3993	Subscriber-ID suboption for DHCP relay agent
	option
RFC 4330	Simple Network Time Protocol (SNTP) version 4
RFC 5905	Network Time Protocol (NTP) version 4

VLAN support

Generic VLAN Registration Protocol (GVRP) IEEE 802.1ad Provider bridges (VLAN stacking, Q-in-Q) IEEE 802.1Q Virtual LAN (VLAN) bridges IEEE 802.1v VLAN classification by protocol and port IEEE 802.3ac VLAN tagging

Voice over IP (VoIP)

LLDP-MED ANSI/TIA-1057 Voice VLAN

Chassis switching fabric

	2 x CFC400
SBx8112	800Gbps
SBx8106	320Gbps

Control and Line Card switching capacity and forwarding rates

	Switching capacity	Forwarding rate
SBx81XS6	120Gbps	89Mpps
SBx81GT24	48Gbps	36Mpps
SBx81GP24	48Gbps	36Mpps
SBx81GS24a	48Gbps	36Mpps
SBx81GT40	80Gbps	60Mpps

Latency

Measured in microseconds (µs) at 64byte framesize

	10Mbit	100Mbit	1000Mbit
AT-SBx81GP24	36.0 µs	5.6 µs	2.6 µs
AT-SBx81GT24	36.0 µs	5.6 µs	2.6 µs
AT-SBx81GT40	165.0 µs	20.0 µs	6.0 µs
AT-SBx81GS24a	38.5 µs	7.0 µs	2.8 µs
AT-SBx81XS6	3.1 µs (10Gbit)		

Ordering Information

AT-SBx8112-96POE+

96-port PoE+ starter bundle 1 x AT-SBx8112 chassis 1 x AT-SBx81CFC400 controller fabric card 4 x AT-SBx81GP24 PoE+ line card 1 x AT-SBxPWRSYS1 system power supply 1 x AT-SBxPWRPOE1 PoE power supply

AT-SBx8112-12XR

12-port 10G resiliency starter bundle 1 x AT-SBx8112 chassis 2 x AT-SBx81CFC400 controller fabric card 2 x AT-SBx81XS6 SFP+ Ethernet line card 2 x AT-SBxPWRSYS1 system power supply

AT-SBx8112 Rack mount 12-slot chassis with fan tray

AT-SBx8106 Rack mount 6-slot chassis with fan tray

AT-SBxFAN12 Contains four fans, temperature sensors and controller board

AT-SBxFAN06 Contains two fans, temperature sensors and controller board

AT-SBx81CFC400 400Gbps Controller fabric card

AT-SBx8IGP24 24-port 10/100/1000T PoE+ Ethernet line card

AT-SBx8IGT24 24-port 10/100/1000T Ethernet line card

AT-SBx8IGT40 40-port 10/100/1000T RJ.5 Ethernet line card

AT-SBx8IGS24a 24-port 100/1000X SFP Ethernet line card

AT-SBx81XS6 6-port 10GbE SFP+ Ethernet line card

AT-SBxPWRSYSI-xx 1200W AC system power supply

AT-SBxPWRSYSI-80 1200W DC system power supply

AT-SBxPWRPOEI-xx 1200W AC PoE power supply

10GbE SFP+ modules

AT-SPIOSR 10GSR 850 nm short-haul, 300 m with MMF AT-SPIOLR 10GLR 1310 nm medium-haul. 10 km with SMF

AT-SPI0ER40/I

10GER 1550 nm long-haul, 40 km with SMF

AT-SPI0ZR80/I 10GER 1550 nm long-haul, 80 km with SMF

10GbE cables

AT-SPI0TVVI 1 meter SFP+ direct attach cable

AT-SPIOTVV3 3 meter SFP+ direct attach cable

AT-SPIOTW7 7 meter SFP+ direct attach cable

SFP modules

AT-SPFX/2 100FX multi-mode 1310 nm fiber up to 2 km

AT-SPFX/15 100FX single-mode 1310 nm fiber up to 15 km

AT-SPFXBD-LC-13 100BX Bi-Di (1310 nm Tx, 1550 nm Rx) fiber up to 10 km

AT-SPFXBD-LC-15 100BX Bi-Di (1550 nm Tx, 1310nm Rx) fiber up to 10 km

AT-SPTX 1000T 100 m copper

AT-SPSX 1000SX GbE multi-mode 850 nm fiber up to 550 m

AT-SPSX/I 1000SX GbE multi-mode 850 nm fiber up to 550 m industrial temperature

AT-SPEX 1000X GbE multi-mode 1310 nm fiber up to 2 km

Where xx = 10 for US power cord 20 for no power cord 30 for UK power cord 40 for Australian power cord 50 for European power cord

Power cords are only shipped with AT-SBxPWRSYS1 or AT-SBxPWRPOE1 power supplies. Note: Power entry connector is IEC 60320 C19 (High capacity) AT-SPLX10 1000LX GbE single-mode 1310 nm fiber up to 10 km

AT-SPLX10/I 1000LX GbE single-mode 1310 nm fiber up to 10 km industrial temperature

AT-SPBD10-13 1000LX GbE Bi-Di (1310 nm Tx, 1490 nm Rx) fiber up to 10 km

AT-SPBD10-14 1000LX GbE Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 10 km

AT-SPLX40 1000LX GbE single-mode 1310 nm fiber up to 40 km

AT-SPZX80 1000ZX GbE single-mode 1550 nm fiber up to 80 km

RJ point five to RJ-45 cables For use with AT-SBx81GT40

AT-UTP/RJ point five-100-A-008 RJ point five to RJ-45 1 m Ethernet cables (pack of 8)

AT-UTP/RJ point five-300-A-008 RJ point five to RJ-45 3 m Ethernet cables (pack of 8)

Feature licenses

NAME	DESCRIPTION	INCLUDES
AT-FL- CFC400-01†	AT-SBx8100 Premium License	 » OSPF* » BGP4 » PIMv4-SM, DM, SSM » VLAN double tagging (Q-in-Q) » RIPng » OSPFv3 » BGP4*for IPv6 » MLDv1 & v2 » PIMv6-SM » RADIUS-Full
AT-FL-CF4- AM40 [†]	AMF Master License up to 40 nodes	» AMF Master 40
AT-FL-CF4- AM80 [†]	AMF Master License up to 80 nodes	» AMF Master 80
AT-FL-CF4- AMALL†	Allows all nodes to join AMF network	» AMF All Clients

* 64 OSPF routes included in base license

⁺ Only a single license is required per chassis. This is automatically synchronized to the second control card

Allied Telesis

the solution : the network

 North America Headquarters
 19800 North Creek Parkway
 Suite
 100
 Bothell
 WA 98011
 USA
 T: +1
 800
 424
 428
 F: +1
 425
 481
 3895

 Asia-Pacific Headquarters
 III Tai Seng Link
 Singapore
 534182
 T: +65
 6383
 3830

 EMEA & CSA Operations
 Incheonweg 7
 I 437 EK Rozenburg
 The Netherlands
 T: +31
 20
 7950020
 F: +31
 20
 7950021

alliedtelesis.com

© 2014 Allied Telesis, Inc. All rights reserved. Information in this document is subject to change without notice. All company names, logos, and product designs that are trademarks or registered trademarks are the property of their respective owners. 617-000473 Rev B